Cholinergic suppression: a postsynaptic mechanism of long-term associative learning.

نویسندگان

  • A D Morielli
  • E M Matera
  • M P Kovac
  • R G Shrum
  • K J McCormack
  • W J Davis
چکیده

Food avoidance learning in the mollusc Pleurobranchaea entails reduction in the responsiveness of key brain interneurons in the feeding neural circuitry, the paracerebral feeding command interneurons (PCNs), to the neurotransmitter acetylcholine (AcCho). Food stimuli applied to the oral veil of an untrained animal depolarize the PCNs and induce the feeding motor program (FMP). Atropine (a muscarinic cholinergic antagonist) reversibly blocks the food-induced depolarization of the PCNs, implicating AcCho as the neurotransmitter mediating food detection. AcCho applied directly to PCN somata depolarizes them, indicating that the PCN soma membrane contains AcCho receptors and induces the FMP in the isolated central nervous system preparation. The AcCho response of the PCNs is mediated by muscarinic-like receptors, since comparable depolarization is induced by muscarinic agonists (acetyl-beta-methylcholine, oxotremorine, pilocarpine), but not nicotine, and blocked by muscarinic antagonists (atropine, trifluoperazine). The nicotinic antagonist hexamethonium, however, blocked the AcCho response in four of six cases. When specimens are trained to suppress feeding behavior using a conventional food-avoidance learning paradigm (conditionally paired food and shock), AcCho applied to PCNs in the same concentration as in untrained animals causes little or no depolarization and does not initiate the FMP. Increasing the concentration of AcCho 10-100 times, however, induces weak PCN depolarization in trained specimens, indicating that learning diminishes but does not fully abolish AcCho responsiveness of the PCNs. This study proposes a cellular mechanism of long-term associative learning--namely, postsynaptic modulation of neurotransmitter responsiveness in central neurons that could apply also to mammalian species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cholinergic agonist carbachol enables associative long-term potentiation in piriform cortex slices.

Pyramidal cells in piriform (olfactory) cortex receive afferent input from the olfactory bulb as well as intrinsic association input from piriform cortex and other cortical areas. These two functionally distinct inputs terminate on adjacent apical dendritic segments of the pyramidal cells located in layer Ia and layer Ib of piriform cortex. Studies with bath-applied cholinergic agonists have sh...

متن کامل

Physiological activation of cholinergic inputs controls associative synaptic plasticity via modulation of endocannabinoid signaling.

Cholinergic neuromodulation controls long-term synaptic plasticity underlying memory, learning, and adaptive sensory processing. However, the mechanistic interaction of cholinergic, neuromodulatory inputs with signaling pathways underlying long-term potentiation (LTP) and long-term depression (LTD) remains poorly understood. Here, we show that physiological activation of muscarinic acetylcholin...

متن کامل

Dopaminergic Control of Corticostriatal Long-Term Synaptic Depression in Medium Spiny Neurons Is Mediated by Cholinergic Interneurons

Long-term depression (LTD) of the synapse formed between cortical pyramidal neurons and striatal medium spiny neurons is central to many theories of motor plasticity and associative learning. The induction of LTD at this synapse is thought to depend upon D(2) dopamine receptors localized in the postsynaptic membrane. If this were true, LTD should be inducible in neurons from only one of the two...

متن کامل

Cholinergic suppression of transmission may allow combined associative memory function and self-organization in the neocortex

Selective suppression of transmission at feedback synapses during learning is proposed as a mechanism for combining associative feedback with self-organization of feedforward synapses. Experimental data demonstrates cholinergic suppression of synaptic transmission in layer I (feedback synapses), and a lack of suppression in layer IV (feedforward synapses). A network with this feature uses local...

متن کامل

Suppression of synaptic transmission may allow combination of associative feedback and self-organizing feedforward connections in the neocortex.

Selective suppression of synaptic transmission during learning is proposed as a physiological mechanism for combining associative memory function at feedback synapses with self-organization of feedforward synapses in neocortical structures. A computational model demonstrates how selective suppression of feedback transmission allows this combination of synaptic function. During learning, sensory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 83 12  شماره 

صفحات  -

تاریخ انتشار 1986